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Abstract 

In this paper, we generalize the BIcklund theorem on surfaces with Gaussian curvature K = - 1 
in Iw3 to the surfaces with K = - 1 in Iw2%‘. 
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The famous Backlund theorem presented a geometrical method to construct a family of 
surfaces with Gaussian curvature K = - 1 from a known surface with K = - 1, i.e., the 
Backlund transformation that we know well [l-3]. With the research and development of 
the soliton theory, Backlund transformation has become an important method to find the 
solutions of soliton equations. At the same time, the geometricians also pay attention to 
the generalization and development of the geometrical content of the Backlund theorem. 
In [4,5], the authors generalized the Backlund theorem to the n-dimensional submanifolds 
with negative constant curvature in E *‘-’ In [63, we generalize the Backlund theorem . 
to the surfaces with (kt - m)(k2 - m) = -Z* in R3, where kt and k2 are the principal 
curvatures. In this paper, we generalize the Backlund theorem to the surfaces with K = - 1 
in Minkowski space I@ i. 

It is known [7], that for the surfaces with K = -1 in !R2T’, we have the following 
propositions. 
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Proposition 1. If S is a space-like surface of K = -1 in Iw2*’ and free of umbilics, then S 
can be covered by charts with Tchebyshev coordinates (u, v) such that thejrstfundamental 
form 

I = cash’ -& du* + sinh2 $tx dv’, (1) 

and ;F.g secand fbdwmvltnl fiwm J’-.“-I”“-.“-“-vJ., ..,. 

II = cash $Y sinh $(du2 + dv’), (2) 

where (Y(u, v) satisfies the sinh-laplace equation 

CX,,,, + (Y”” = sinhcr. (3) 

Proposition 2. If-S’ is a time-like su$ace with K = - 1 in IL!‘,’ andfree of umbilics, then S’ 
can be covered by charts with Tchebyshev coordinate (u, v) such that the first fundamental 
form 

I = cos’ $x’ du2 - sin’ ia’ dv’, (4) 

and the second fundamental form 

II = cos @sin $x’(du’ + dv’), (5) 

where CX’ satisfies the sine&place equation 

CL& + C& = sincr’. (6) 

Theorem 1. Zf CY(U, v) satisfies Eq. (3), t is an arbitrary constant, then the following 
equations on ~2’: 

i cash ~(cx: + cxu) = - sinh ia cos $Y’ - sinh t cash T&X sina’, 

i cash t(aL - cx,) = cash $x sin $t’ - sinh t sinh $cx cos $a’ 

are completely integrable, and cx’(u, v) satisjes the equation: 

cr:, + C& = sincr’. 

(7) 

(8) 

(9) 

Proqf: Since (7) and (8), 

; cash T (cY;, + cruu) = - $q, (cash $Y cos $Y’ + sinh t sinh $Y sin $u’) 

+ $xL(sinh $Y sin $’ - sinh t cash ict cos $x’), 

; cash t (LX;, - cxVV = @,(sinh $Y sin &Y’ - sinh t cash $Y cos $x’) 

+ $L(cosh $a! cos $x’ + sinh t sinh icz sin $cx’), 
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; cash ~(a;, - a;, + a,,,, + cr,,> 

= -i(au + ak)(cosh $Y cos ia’ + sinh t sinh ia sin $x’) 

+ $(a: - a,)(smh $.x sin $a’ - sinh r cash ia cos @). 

Substituting (7) and (8) into (lo), we have 

; cosh2 r(cl;, - a;, + (II,,,, + a,“) 

= (sinh ia cos $x’ + sinh r cash ia sin &‘) 

x (cash ia cos $a’ + sinh t sinh $.Y sin &x’) 

+ (cash $Y sin ia’ - sinh T sinh $x cos ia’) 

x (sinh ia sin ia’ - sinh t cash ia cos ia’) 

= i cosh2 t sinh a. 

Since a satisfies (3), (7) and (8) are completely integrable. Since (7) and (8), 

$ cash r(aL, + a,,) = -$a,(cosh $a cos ia’ + sinh r sinh ia sin $a’) 

+aL(sinh ia sin $a’ - sinh t cash ‘a cos ‘a’) 2 2’ 

i cash r(a:,, - avu) = ia,(sinh ia sin ia’ - sinh t cash ia cos ;a’) 

+ a; (cash ia cos ia’ + sinh r sinh ia sin $a’), 

then 

(10) 

$ cash t(aLu + avv) = ;(a: - a,)(cosh {a cos ia’ + sinh t sinh ia sin {a’) 

+ i(aL + a,)(sinh $a sin $a’ - sinh t cash ia cos $a’). 

(11) 

Substituting (7) and (8) into (1 l), we have 

a:, + a& = sin a’. 

The theorem is proved. 0 

By a similar proof, we also have the following theorem. 

Theorem 1A. Zfa’ satisjes Eq. (6), T is an arbitrary constant then Eqs. (7) and (8) on a 
are completely integrable, and a(u, u) satisfies Eq. (3). 

Therefore, (7) and (8) give the Backlund transformation between (3) and (6). 
In particular, when t = 0, this Backlund transformation was mentioned in [8]. 
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Suppose S is a space-like surface with K = -1 covered by Tchebyshev coordinate 
(u, v), r(u, u) is a parameter representation of S with I and II as (1) and (2). Let (I, el , e2, e3) 
be a field of orthonormal frames such that ei and e2 are the unit tangent vectors of u-lines, 
and u-lines, respectively, e3 is the normal vector of S(e: = e$ = -ei = l), then we have 
the moving equations: 

dr = wret + w2e2, dei = 2 wijej, i = 1,2,3, 
j=l 

where 

WI =cosh;a!du, w2 = sinh $t! du, 

w12 = -wzl = -$_x, du + ;ar, dv, 

~13 = ~31 = sinh $Y du, ~23 = ~32 = cash icx du. 

Let 

e = cos $a’ei + sin $x’e2, e’ = -sin $cz’er + cos $(r’e2, 

O! - rnah TD I_ Gnh TO* -3 - u”ula cG 011.l. c c,, 

where (II’ is a solution of Eqs. (7) and (8). 
Suppose S’ is a surface defined by 

r’ = r + cash te. 

Theorem 2. e; is the kormal vector of S’. 

Pro05 Since 

dr’ = dr + cash t de, 

de = $(da’ + 2wiz)e’ + 

e; + dr’ = cash t((i cash r(c& 

(cos $01wi3 + sin iaw*s)es, 

- (Y ” ) - cash &Y sin ~CX’ 2 2 

+ sinh r sinh {IX cos $u’) du + (4 cash t(czU + a,) 

+ sinh ~CX cos $Y’ + sinh r cash $x sin 4~‘) dv), 

since (7) and (8), 

ei . &-! = 0, 

and 

e;.e$=cosh2r-sinh2t==1. 

The theorem is proved. 

(l-22) 

(13) 

(14) 

(1% 

(16) 

(17) 
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Lemma 1. For the sugace S’, the Jirst fundamental form 

I = cos2 $a’du2 - sin2 ~a’dv2. 

PrvojI Since (15), (16) and 

(da’ + 22~12) = (cx: - a,) du + (cx; + au> dv, 

and by using (7) and (8), then 

I= dr’. dr’ 

= (cash $CT du - sin ia’((cosh T&X sin $t’ - sinh r sinh $t cos ia’) du 

- (sinh $CX cos $t’ - sinh t cash ia sin $t’) dv))2 

+ (sinh $t + cos {a’((cosh F&Y sin ia? - sinh t sinh $tx cos L&Y’) du 

- (sinh & cos $x’ - sinh t cash $Y sin $‘) dv))2 

- cosh2 T(COS $x’ sinh ia! du + sin &’ cash $Y dv)2 

= cos2 iu’du2 - sin2 la’dv2 2 2 . 

This compietes the proof. 

Lemma 2. The second fundamental form of S’ 

II = sin ~ct’cos $‘(du2 + dv2). 

ProojI Since (15) and 

de; = cash r de’ - sinh t des, 

de’ = -$(du’ + 2w12)e + (-sin $xw13 + cos $x’w23)e3, 

we have 

II=-dR’. de; 

= sinh t cash $x sinh &(du2 + dv2) 

+ ; cash r(da; + ~12) 

x ((cash ICY cos &’ - sinh t sinh $Y sin $z’) du 

+ (sinh $x sin $x’ + sinh 5 cash $cz cos &‘) dv) 

+ cosh2 r(cos $x’sinh T&E du + sin &‘cosh $CZ dv) 

x (- sinh {CX sin $a’ du + cash &x cos $t’ dv): 

by using (7) and (8), 

II = cos @’ sin &‘(du2 + dv2). 

Then we have the following theorem. 

(18) 

ii 

(19) 
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Theorem 3. S’ is a time-like sueace wifh K = - 1. 

According to Theorems 1-3, to construct a family of time-like surfaces with K = - 1 
from a known space-like surface with K = - 1, we only need to solve the completely 
integrable equations (7) and (8) 

Inversely, suppose S’ is a time-like surface with k = - 1 covered by Tchebyshev coor- 
dinate (u, v), r’(u, V) is a parameter representation of S’ with I and II as (4) and (5). Let 
(r’, ei, e;, e;) be a field of orthonormal frames such that e; and e; are the tangent vectors 
of u-iines and u-iines, respectively, e; is the normal vector of S(e;2 = -ez = e; = l), 
then we have the moving equations: 

dr’ = w’,e; + wie;, de; = 2 w;e(, i = 1,2,3, 
j=l 

where 

w; = cos hx’ du 2 w’ = sin &Y’ du ’ 2 2 ’ w;2=w;,=-5 ‘a; du + $cx; du, 0 

w;s = -wit = sin ia, du, ~‘23 = wi2 = cos ;a’ du. 

Let 

e’ = cash &ei - sinh ;a&,, e ‘I = sinh ict!ei - cash iaek, 

es = sinh tei - cash re”, 

where CX(U, u) is a solution of Eqs. (7) and (8). 
Suppose S is defined by 

r = r’ - cash re’. 

For the surface S, we can also prove the following results. 

Theorem 2A. e3 is a unit normal vector of S. 

Theorem 3A. S is a space-like surface with K = -1. 

In conclusion, we give the Backlund transformation between the space-like surface with 
K = - 1 and the time-like surface with K = - 1 in R2* ‘. 
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